Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
JPEN J Parenter Enteral Nutr ; 46(8): 1875-1882, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1881433

ABSTRACT

BACKGROUND: Indirect calorimetry (IC) is the gold standard for measuring resting energy expenditure. Energy expenditure (EE) estimated by ventilator-derived carbon dioxide consumption (EEVCO2 ) has also been proposed. In the absence of IC, predictive weight-based equations have been recommended to estimate daily energy requirements. This study aims to compare simple predictive weight-based equations with those estimated by EEVCO2 and IC in mechanically ventilated patients of COVID-19. METHODS: Retrospective study of a cohort of critically ill adult patients with COVID-19 requiring mechanical ventilation and artificial nutrition to compare energy estimations by three methods through the calculation of bias and precision agreement, reliability, and accuracy rates. RESULTS: In 58 mechanically ventilated patients, a total of 117 paired measurements were obtained. The mean estimated energy derived from weight-based calculations was 2576 ± 469 kcal/24 h, as compared with 1507 ± 499 kcal/24 h when EE was estimated by IC, resulting in a significant bias of 1069 kcal/day (95% CI [-2158 to 18.7 kcal]; P < 0.001). Similarly, estimated mean EEVCO2 was 1388 ± 467 kcal/24 h when compared with estimation of EE from IC. A significant bias of only 118 kcal/day (95% CI [-187 to 422 kcal]; P < 0.001), compared by the Bland-Altman plot, was noted. CONCLUSION: The energy estimated with EEVCO2 correlated better with IC values than energy derived from weight-based calculations. Our data suggest that the use of simple predictive equations may potentially lead to overfeeding in mechanically ventilated patients with COVID-19.


Subject(s)
COVID-19 , Respiration, Artificial , Adult , Humans , Retrospective Studies , Reproducibility of Results , COVID-19/therapy , Calorimetry, Indirect/methods , Energy Metabolism , Critical Illness/therapy
SELECTION OF CITATIONS
SEARCH DETAIL